Closing Wed: \quad HW_2A, 2B, 2C Closing next Wed: HW_3A, 3B, 3C Midterm 1 is next Thursday, April 21, covers 4.9, 5.1-5.5, 6.1-6.3

Entry Task (More 5.5 examples):
Using substitution, evaluate:
(a) $\int_{1}^{2} e^{5 x} d x$
(b) $\int x^{3} \sqrt{1+x^{2}} d x$

Ch 6: Basic Integral Applications

6.1 Areas Between Curves

Using dx:

(a) Typical rectangle

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x$

Using $d y$:

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(y_{i}\right)-g\left(y_{i}\right)\right) \Delta y
$$

Example: Set up an integral for the area bounded between $x=2 y^{2}$ and $x=y^{3}$ (shown below) using dy.

Summary: The area between curves

1. Draw picture finding all intersections. $x=a \quad=$ smallest x-value in region
$x=b \quad=$ biggest x-value in region
$y=c \quad=$ smallest y-value in region
$y=d \quad=$ biggest y-value in region
2. Choose dx or dy . And get everything in terms of the variable you chose.
3. Draw a typical approx. rectangle.
4.Set up as follows:

$$
\text { Area }=\int_{a}^{b}(\mathrm{TOP}-\mathrm{BOTTOM}) d x
$$

$$
\text { Area }=\int_{c}^{d}(\text { RIGHT }- \text { LEFT }) d y
$$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x=y^{2}$ and $y=x-2$

Set up an integral for the total positive area

 of the following regions:

